

H H H

NaOH CH3CN OTS 60°C

The question is how do we discern when substitution is favored verse elimination? The answer is found partly in how we should think about reactions of alkyl halides.

The characteristic reaction of alkyl halides (or alkyl tosylates) with a Lewis base is **elimination**, special conditions are required to promote substitution.

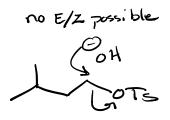
Given here is a set of guidelines (not absolutes) that can be used to arrive at the probable solution to nucleophilic substitution/elimination problems.

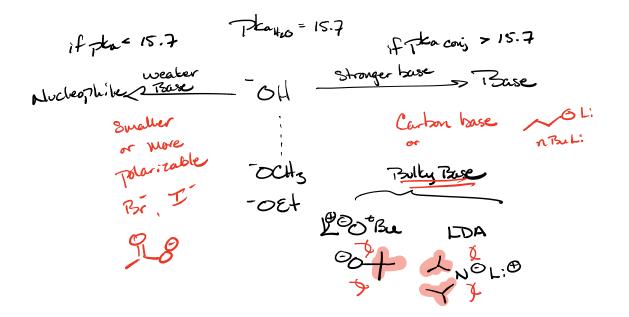
-	Substitution	Elimination
substrate	S _N 2 benzyl = allyl > Me > 1° > 2° >> 3° α-haloketone, α-haloester, α-halonitrile	$E2$ $3^{\circ} > 2^{\circ} > 1^{\circ}$
solvent	polar aprotic	polar aprotic
nucleophile	good nuc (weaker base than OH^{-})	bulky or strong base $\geq OH^{-}$
leaving grou	p sulfonate > $I^- > Br^- > Cl^-$	sulfonate $> I^- > Br^- > Cl^-$
Temp	low	high
-		
\checkmark	S _N 1	E1
substrate	$3^{\circ} > 2^{\circ}$	$3^{\circ} > 2^{\circ} > 1^{\circ}$
solvent	polar protic	polar protic
nucleophile	weak nuc (no anions!)	any anionic base
leaving grou	$sulfonate > I^- > Br^- > Cl^-$	sulfonate > I^- > Br^- > Cl^-
Temp	low	high
ani	on = Oxy = OH (HCO_3	IN KOBE

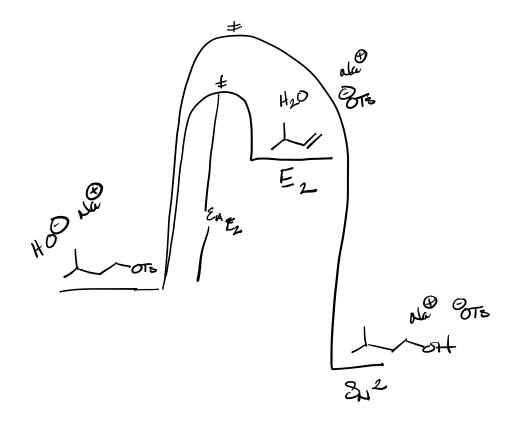
Classification of Nucleophiles

Very good nucleophile	I ⁻ , HS ⁻ , RS ⁻
Good nucleophile	Br ⁻ , OH ⁻ , RO ⁻ , CN ⁻ , N_3^-
Fair nucleophile	NH_3 , Cl^- , F^- , RCO_2^-
Weak nucleophile	H ₂ O, ROH
Very weak nucleophile	RCO ₂ H

Nucleophilic Constants of V	/arious
Nucleophiles	


	Nucleophile	n _{CH3} I	pK _a of conjugate acid
	CH ₃ OH	0.0	-1.7
	F -	2.7	3.45
	CH ₃ CO ₂	4.3	4.8
	Cl ⁻	4.4	-5.7
es. Jus	NH ₃	5.5	9.25
Lesser wites	N ₃ -	5.8	4.75
Not A	C ₆ H ₅ O ⁻	5.8	9.89 puort
	Br [–]	5.8	9.89 phon -7.7 HB
	СН ₃ О ⁻	6.3	15.7 WeoH
~	-0H	6.5-	15.7 -+20
1	(CH ₃ CH ₂) ₃ N	6.7	10.70
	CN -	6.7	9.3 HCN
N	Ι -	7.4	-10.7 HI
V	(CH ₃ CH ₂) ₃ P	8.7	8.69 R.P-H
Batter	C ₆ H ₅ S -	9.9	6.5
Potter Nuc			


Solvents Which Promote S _N 2/E2 (bimolecular)
Acetone Dimethyl sulfoxide (DMSO) N,N-Dimethylformamide (DMF) Acetonitrile Hexamethylphosphoramide (HMPA)


Solvents Which Promote

S_N1/E1 (Unimolecular/Ionizing) Ethanol Methanol 50% Aqueous Ethanol Water Acetic Acid Formic Acid Trifluoroacetic acid CF3 - OH

NUCLEOPHILIC SUBSTITUTION AND ELIMINATION

The question is how do we discern when substitution is favored verse elimination? The answer is found partly in how we should think about reactions of alkyl halides.

The characteristic reaction of alkyl halides (or alkyl tosylates) with a Lewis base is **elimination**, special conditions are required to promote substitution.

Given here is a set of guidelines (not absolutes) that can be used to arrive at the probable solution to nucleophilic substitution/elimination problems.

_	Substitution	Elimination
substrate	$S_N 2$ benzyl = allyl > Me > 1 ^o > 2 ^o α-haloketone, α-haloester, α-halonitrile	E2 $3^{\circ} > 2^{\circ} > 1^{\circ}$
solvent	polar aprotic	polar aprotic
nucleophile	good nuc (weaker base than OH ⁻)	bulky or strong base $\geq OH^{-}$
leaving group	sulfonate > I ⁻ > Br ⁻ > Cl ⁻	sulfonate $> I^- > Br^- > Cl^-$
Temp	low	high
substrate	$3^{\circ} > 2^{\circ}$	E1 $3^{\circ} > 2^{\circ} > 1^{\circ}$
solvent	polar protic	polar protic
nucleophile	weak nuc (no anions!)	any anionic base
leaving group	sulfonate > I^- > Br^- > Cl^-	sulfonate > I^- > Br^- > Cl^-
Temp	low	high

Classification of Nucleophiles

, CN ⁻ , N ₃ ⁻
RCO ₂

Nucleophilic Constants of Various
Nucleophiles

	1	
Nucleophile	n _{CHJ} I	pK _a of conjugate acid
CH ₃ OH	0.0	-1.7
F -	2.7	3.45
CH ₃ CO ₂	4.3	4.8
Cl ⁻	4.4	-5.7
NH ₃	5.5	9.25
N ₃ ⁻	5.8	4.75
C ₆ H ₅ O ⁻	5.8	9.89
Br –	5.8	-7.7
СН ₃ О –	6.3	15.7
OH ⁻	6.5	15.7
(CH ₃ CH ₂) ₃ N	6.7	10.70
CN -	6.7	9.3
I —	7.4	-10.7
(CH ₃ CH ₂) ₃ P	8.7	8.69
C ₆ H ₅ S -	9.9	6.5

Solvents Which Promote S _N 2/E2 (bimolecular)
Acetone Dimethyl sulfoxide (DMSO) <i>N,N-</i> Dimethylformamide (DMF) Acetonitrile Hexamethylphosphoramide (HMPA)

Solvents Which Promote S_N1/E1 (Unimolecular/Ionizing)

Increasing nucleophilicity (solvolysis)	Ethanol Methanol 50% Aqueous Ethanol Water Acetic Acid Formic Acid Trifluoroethanol Trifluoroacetic acid
---	---